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Motivation:

e calculate FLR corrections to pressure tensor

in terms of particle distribution function

e 1o closure relation is assumed, no truncation

using gyrokinetic formalism:

advantage: reduced phase-space (5D),

expanded in p/L already



Gyrokinetic ordering:
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Assumptions:

e clectrostatic, straight B

e second order in € and €g
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Previous work:

e Braginskii gyroviscosity

collisional ordering [Braginskii’65]
neglects gradients of heat fluxes in (V- rg)

e Fluid calculations

[Hazeltine and Meiss’85, Chang and Callen’92, Smolyakov’98],
include higher order terms (in €), heat fluxes

e Gyrofluid calculations

[Brizard’92, Dorland and Hammet’92]
gyrokinetic Vlasov equation is used to derive a set of reduced
gyrofluid (and particle fluid) FLR equations

e For V' # 0 all give different answers!



OUTLINE:

e Gyrokinetic formalism

e Gyrofluid equations

e Particle-fluid equations

e Example: first four fluid equations

e Parallel momentum equation, (V- 71'g)H

e “Perpendicular momentum equation”, (V- mg)
e Two forms of gyroviscous force

e FLR particle closure

e Summary



Gyrokinetic formalism

Gyrokinetic Vlasov equation (up to O(€?)):

[Dubin’83]
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Z = (X, U, u,0) - gyrocenter coordinates,
F = F(X,U, ) - gyrocenter distribution function.
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Relation between gyrocenter and guiding-center
variables (I)

e First order transformation (in €;):
ZN(Z) =77 + G,

where components of generating vector are (n =1 or 2):

G, = —bdS,/0U — 1b x VS,

Gl —vys,
G = S, /00
Gz = —05,/0u

and 57 is a gauge function for the first order transformation
[Cary and Littlejohn’83]
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Relation between gyro-center and guiding-center
variables (II)

e Second order transformation (in €;):

7 j 9G] 3
Z1(Z) = 70 + G} + GlaZ + G+ O(),

Sy is a gauge function for the second order transformation:
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e Guiding-center distribution function Fj,. can be expressed in terms
of the gyrocenter distribution function, F’



General gyro-fluid moment equation

Gyro-fluid (GF) moment is defined as:

My (X, t) = U = [ p*U' FdpdU

From gyrokinetic Vlasov equation up to O(e?), O(e ) order,

for [ - even:

d/Mkl
dt

+ VM1 + 55 {Vie, Mk;+1l} =0

1
A
for [ - odd:

d/Mkl 1
M M
7 + V| (Myg1 + UMy 1) + 5132

{vJﬁD) Mkz—i—ll}

+ QBZM/H_U 1VHVJ_QD =0

where

—=_+(Vg-V), {f.g}=b-VfxVy



Relation between gyrofluid and particle-luid moments
General particle-fluid (PF) moment:
my(x,t) = |p" U = [ )2B) ()" f d*v
my; 10 terms of guiding-center distribution function, F:
my (X, 1) /,ukUl F(Z)5(X + p—x)d°Z
Gyrokinetic transformation (needed up to O(e)):
Fy(Z) =Ty (F) = F + Gy - VF + G{OF /0p + GYOF /U

Substituting F},. and G, one can express PF moment in terms of
GF moments (O(e, )):

k+1
mil(x, 1) = (Mkl + —VJ_Mk;Jrll ( 7 )MsziSﬁ) (x,¢)
with O(e) ) accuracy, the inverse:
1 _, (E+1)
Mpu(X,t) = | mu — 5p Y LMkl — kazv p|(X,1)



General particle-fluid moment equation

Expressing GF moments in terms of the PF moments in the gyro-
fluid set of equations, one can obtain with O(€?) and O(e ) accuracy

for [ - even:

d,:lzkl - _vHmkm+mkz(k+1)%vi¢/Bz—VL{vL o.M}/ B

for [ - odd:

d'my,; P
o= —Vimpe1 — Imy Ve =V -{VLemu}/B

+ [(]{ + 1)mkl+1/32 — lmk+1l_1/B] VHV%_QO

where d'/dt = 0/t + (v - V).

Note that particle-fluid equations exhibit a generalized form of “gy-
roviscous cancellation” (a cancellation of (v, - V) term from the total
time derivative on LHS).



Example: nonlinear reduced fluid equations O(¢?)

n= 11" =me, nop = U] = mq,
pr=|1Bull™ = B, py = 107" = m,
d'n n d 3
— = =V () + 55 Vie= Vi {VLie.pi}/B
d'py L d 2
_ 2pL @ B
7 V) |UnB|| -|— 32 dtv p— ViV WaHM 1}/
dp _ 3, 2L > 2
— = -V |IU H+Bthv o= Vi AVLo |U|}/B
d'v
nd—tH = =V (p+np)— VL {V.ig, U}/ B* + pHB Vi Vie
where

1
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Parallel momentum equation, (V- mg),

From FLR parallel momentum equation, one can find parallel com-
ponent of gyroviscous force (in terms of PF moments):

d'v p

n—l = =V (b + )= Vo (Vo [Unl}/ B+ PP vy Vi
dv

nd—tH = — V) p— (V- Wg)H —n V) e,

PCGL

where 7, is defined by: P = + Wy +pVV

1
(V- mg)y= —(ve Vo + =5 Vi AV g |Ua)}

_ pH

= PL g, V2

- Parallel momentum equation agrees with direct fluid calculations

of [Smolyakov’98] for p(f) = p,(‘o).

- extra terms ~ §7 and parallel vorticity terms [Brizard’92, Chang
and Callen’92] are cancelled out, when parallel heat fluxes contribu-
tion is consistently retained.



“Perpendicular momentum equation”, (V- mg)

Nonlinear reduced fluid equations can be derived by taking moments
of the gyrokinetic Vlasov equation, and expressing them in terms of
the particle-fluid moments. Accuracy of O(e) is required.

Perpendicular component of momentum equation can not be derived
in the same way (moment of / V| F dUdudf vanishes). It can be
recovered, when nv(x,t) is expressed via moments of the gyro-
center distribution function F' through the second order in € and

€5.
From
dVJ_
n%: —VipL— (V 7Tg)J_ -|—7”L(EJ_-|—V X B),
follows:
VS?) = V,+Vg
Vet ——bx (V )+1B><dv(f)
V| = V, — . —
+ VE nB Te B dt

O(€2)

where v, = b x Vp, /(nB), and d/dt = 8/dt + v v,
If particle-fluid velocity nv, = 'V fd®V is calculated up to the
second order, the perpendicular component of gyroviscous force can

be found.



Calculation of nv, (I)

nvy(x,t) = /Wwaxt) W = /VLFgcd(X%—p X)d6Z

where the guiding-center distribution function, Fy., can be expressed
via gyro-center distribution function, F', up to the second order:
oF 1 0 ( ; OF ) Lot OF

_ J _J
FgC_F+GaZ GaZ Lozi 2071

Keeping all nonlinear terms ~ O(€?, ees, €) and O(e_ ), we obtain:

1~ I -
nv, = EbXVPL+NVE+EbXV(VL2 [

N (0
_bevx“ﬁ(a V., v)vw

+ ﬁb x V(V, P-V o)+ @VE(VE P))
N 2

where RHS is written in terms of the gyro-fluid moments, and

NV,=bx VP, /B and x, = —(P,/B)b-V x V.



Calculation of nv, (II)

In terms of particle-fluid moments nv | becomes:

S 7um,+v@-£§5xxva2mﬂm+7%§5xvyL
- %% Vip+ inB?)B X V(V, pp)?
Therefore,
(V- 1q), = —nd;;*%— V.Y

From FLR fluid equation for p |, it can be shown that

dv,
dt

which allows to write the perpendicular gyroviscous force in [Chang
and Callen’92] form, as:

1A
= (V.- V)vi — b x V(9] |Us)

(V. ﬁg)J_: —n(V* . V)VL + E) X V(VH HU,LLH)+ V. X

where
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RESULTS (PF)

. PCGL

For 7y defined by: mwe= P — pvv, in terms of PF mo-

ments, we have calculated up to second order in € and €5, and up to

O((kLpi)?):

(Vmg)y = ~nve Vo + 7 Va Vi UM} (1)
_Pj 1;2m v Vi
(V-7g), = —(nv.- V)V +bx V(V |[Uul)+ VL X (2)
o
_ _nd;;w Y (3)

For Maxwellian f: y = —%B VXV, — ﬁ Vi-(pLVLT)).

Note that two forms (2) and (3) of perpendicular gyroviscous force
are obtained, which are related by the equation for p .

For V|, T, = 0, these two expressions are equivalent to that of
[(Chang and Callen’92] and [Hazeltine and Meiss, 1985], respectively.
For 0T'| = 0Tj, our results agree with calculations by Smolyakov
[1998].



Gyroviscous stress tensor in terms of F
(FLR particle closure)

GF gyroviscous stress tensor defined as:
II,=P — P, (I-bb)— Pbb

it is related to mr,

II, =7, +pVV + (pL— PL—pV7/2) (I—bb)
o
+ (p) = B —pV})bb

where p () and P,y are PF and GF pressure, respectively.

Expressing particle-fluid moments in terms of gyrofluid moments:

(V-Tg) = (nVg-V)V+bx V (V|lulU])
+ Vo (VAII2l/4 = 3xL/2+nV. - Vi)
+ Vi (VINUull/2B - x.)
+ b(VeAVLe, U} + {o, ViIUul}/2) /B

where

P, -
X1=—5b VXV, |[x] = [(xFdUdps,



Summary

FLR corrections to the ion stress tensor have been derived through
O(e ) order, and can be used both in kinetic and fluid calculations.

e F'LR corrections are calculated using gyrokinetic approach.

e Kinetic expression for (V - Ilg) allows to include higher order FLR
corrections into numerical models with so-called particle closure - it
is more accurate than usual drift-kinetic and cheaper than the gy-
rokinetic schemes.

e A set of nonlinear FLR reduced fluid equations has been obtained
in a general form.

e Previous calculations of (V- mg) for T' # const have been cor-
rected. Our results are in general agreement with the direct fluid
calculations by Smolyakov [1998].

e Disagreement between the previous direct fluid and gyrofluid cal-
culations of (V- ﬂ'g)H has been resolved.



